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ABSTRACT
Computers get faster every year; brains don’t. Passwords and other
memorized credentials have unique usability advantages over to-
kens and biometrics, so we desire to design secure systems that
maintain lengths that users can memorize. Some passwords are
subject primarily to online attacks, and are simple to defend with
rate limits and lockouts. Others, used to generate encryption keys,
must be secure against offline attacks. We coin the term “crypt-
word” to distinguish these from passwords subject primarily to
online attacks.

Authentication passwords do not need to get longer as computers
get faster, if protected by rate limits and lockouts. Using password
key derivation functions (pwKDFs) — a class of preexisting crypto-
graphic algorithms — we show that cryptwords can also remain the
same length and maintain their security strength despite advances
in computation. We achieve this by regularly updating the pwKDF
parameters and regenerating the derived key from the cryptword.
In cases where it is not possible to meaningfully regenerate the
derived key, such as archival data or public verifiers, cryptword
lengths should be chosen to last the lifetime of the data.

We provide simple equations that end users and system admin-
istrators can use to determine minimal assigned password and
cryptword lengths based on personal threat models. We also show
how to use the capabilities of cloud computing providers to esti-
mate attacker costs. These same equations give a timeframe for
cryptword and secret rotation once the encrypted data leaks. Be-
cause these equations do not rely on the current date or current
hardware capabilities, they show that if regularly used, password
and cryptword lengths can remain constant despite improvements
in hardware.
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1 INTRODUCTION
There are two kinds of passwords — those that secure against online
attacks and are suitable for authentication, and those that secure
against offline attacks and are suitable for encrypting data [29]. For
this second kind we coin the term cryptword (see Section 6.2) to
distinguish them from passwords that enable you to authenticate
to another party (“pass”). Figure 1 highlights some key differences
in purpose, attack types, and sufficient entropy between authenti-
cation password and cryptwords.

Passwords

Authentication
Passwords

Cryptwords

Authentication
Passwords

Cryptwords

Purpose Authentication Encryption
Attacks Online Offline
Entropy 13–47 bits Typically > 48 bits

Figure 1: Two Kinds of Passwords

Users often pick their own passwords via an internal process.
An assigned password is any password the user accepts which they
did not choose. A software system or organization may assign a
password to a user or a user may generate a random password
and accept it. While there are examples of non-random assigned
passwords (i.e., some cases of password sharing in an organiza-
tion), our focus is on the security properties of randomly generated
passwords. As such, in this paper we treat assigned passwords as
synonymous with randomly generated passwords.

To provide security guarantees, both authentication passwords
and cryptwords should be generated randomly with equal proba-
bility from a pool of possible passwords. When they are, the best
chance of a successful guess is the inverse of the number of pos-
sible passwords. The Shannon entropy of a randomly generated
password measures the guessability, and throughout this paper we
will refer to bits (of Shannon entropy) as a measure of security.

When we use the term “password” in this paper, we also refer
more generally to passphrases, PINs, and similar keyboard-entered
“something you know” tokens. We don’t address user-chosen pass-
words, which follow a Zipf’s law distribution [64].
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A cryptword is any password that is used to generate a crypto-
graphic key. Cryptwords should1 be randomly generated as dis-
cussed in the preceding paragraph. People use cryptwords in at
least the following settings:

• Data at rest
– Full disk encryption
– File encryption, like password managers, zip files, or SSH
keys stored on disk

• Data in use: Shared verifier
– Cryptocurrency “Brain Wallet”s, which generate all wallet
encryption keys from a user-entered secret

– Stateless Password Managers (see Section 6.7)
• Data in motion: Communicating cryptographic keys2
– Wi-Fi passwords, specifically WPA-PSK and WPA2-PSK3

In effect, cryptwords turn “something you have” (an encryp-
tion key) into “something you know” (the cryptword). Cryptwords
enable key portability with nothing to carry, and as an alternate
means of secure key management potentially remove the need for
a Hardware Security Module (HSM).

Attackers commonly use computers to generate numerous pass-
word guesses and to check if those guesses are correct. For an online
attack, an attacker must check their guess by communicating it to
another party. Defenders who receive these guesses can use rate
limiting and lockouts to guard against online attacks [36].

In an offline attack, the attacker’s computer can check the pass-
word without communicating with any other party. Offline attacks
are typically used against password databases where the passwords
have been replaced by password verifiers (see Section 2.2.1). When
attacking cryptwords, the attacker (1) generates guesses, (2) con-
verts these into trial encryption keys, and (3) attempts decrypt-
ing secret information serving as a verifier. Successful decryption
means the cryptword guess was correct. A difference from attack-
ing password verifiers is that the encrypted data serves as a verifier
instead. These are known ciphertext attacks, since the attacker only
has access to the encrypted data.

1.1 The Problem
Computers get faster every year; brains don’t. In order to resist on-
line and offline attacks, passwords and cryptwords must get longer.
As a result, usability decreases while security remains constant.
Eventually, minimum password lengths will inevitably grow be-
yond the point the average person is wiling to tolerate. When this
happens, the notion of passwords and comparable “something you
know” authentication will expire.

Computers used defensively are the solution. Defending comput-
ers can proactively perform extra mandatory work when creating
the password hash or encrypting using a cryptword. Absent crypt-
analytic attacks, attacker computers will have to perform the same
amount of work. It is known [53] that, if the password hash is
regularly updated until it is leaked, the attacker has no inherent

1“This word . . . mean[s] that there may exist valid reasons in particular circumstances
to ignore a particular item, but the full implications must be understood and carefully
weighed before choosing a different course.” [20]
2We recommend using Password Authenticated Key Exchange (PAKE) instead of
communicating a key between humans using cryptwords.
3Superseded by WPA3-SAE, which uses PAKE

advantage over the defender; security remains constant for a given
security/usability tradeoff.

Our criteria for usable randomly generated passwords are the
following. They should:

• be kept short, to ease entering, memorization, and verbal
and written communication

• be easy to enter on anticipated devices
• not require frequent changes, to ease memorization
• resist guessing attacks, up to a level of security users are
comfortable with

Our research agenda addresses the following issues:
(1) How can the lengths of authentication passwords and

cryptwords remain constant despite computational ad-
vances? If authentication passwords and cryptwords must
get longer, they will eventually exceed usable lengths, and
memorability research will expire. Conversely, practical up-
per limits support research, such as shown by Florêncio
et al. [29]. Upper limits for offline attack resistance should
similarly benefit the research community and end users. As
“something you know” tokens have unique advantages [18,
58], it is important to preserve their usability in encryption.

(2) Do cryptwords need to be treated differently than au-
thentication passwords? If so, how and why? If crypt-
words are different from authentication passwords, it is im-
portant to know how to treat them differently, and possibly
use a different term to refer to them. Presently cryptwords
are simply called passwords, conflating security properties
of both. In general cryptwords must be significantly longer
than authentication passwords, but the same defenses ap-
ply. We find distinctive uses of cryptwords in protocols and
to protect data at rest, though these may not be presented
clearly to end users. Because protocols provide attackers
with cryptword verifiers, these must be treated differently.

(3) How often do cryptwords need to change, and why?
Where it is possible to perform key rotation, cryptwords may
be sized to the key rotation window and kept strong indefi-
nitely. In cases where a verifier leaks, the cryptword itself
must be rotated, and any secrets protected by the cryptword
should be changed as well if possible.

(4) How can we determine appropriate lengths for authen-
tication passwords and cryptwords? We provide simple
equations to calculate required randompassword bit strength
based on personalized tradeoffs between security and usabil-
ity. We also provide some general use suggested lengths for
authentication passwords and cryptwords. Where it is not
possible to re-encrypt or replace sensitive information, crypt-
word sizes must be chosen based on prior work regarding
encryption key lengths [40].

We don’t address attacks such as phishing, credential stuffing,
observation attacks, client or server compromise, rubber-hose crypt-
analysis, or attacks specific to non-password “something you know”
authentication. Password managers are a solution to the credential
stuffing problem and can sometimes help with phishing.

If the suggestions in this paper are adopted, we expect to see
simpler password advice for users, focused around online and cre-
dential stuffing attacks, leaving offline attacks to cryptwords. Users
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will be able to memorize a single strong cryptword to protect their
password manager, and keep that cryptword until their password
manager database leaks. If these suggestions are not adopted, crypt-
words will continue to get longer as shown in Figure 2, until they
are no longer feasible for human use. For example, the creator of
Diceware [55] judged a 5 word diceware passphrase to be adequate
in 1995, since 2014 recommends a 6 word diceware passphrase to
attain the same level of security [54].
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Figure 2: Minimum diceware cryptword lengths derived from
Lenstra and Verhuel’s [40] equations

1.2 Why Random Passwords?
We accept Kerckhoffs’s principle that “the enemy knows the sys-
tem”. An attacker’s best strategy against random selection is parallel
randomized enumeration [24], finding a random password on aver-
age after enumerating half the search space. Any departure from
random generation gives the attacker an advantage — they can
start enumerating from passwords with a higher chance of being
generated.

For small pool sizes such as 4-digit PINs (104 possibilities) or
other scenarios where user-chosen passwords predominate, an av-
erage attacker’s best strategy may remain a Zipf’s law distribution.
In these cases it would be suitable to add a blocklist to the random
password generator [45]. In this manner we defend against two
kinds of attackers; one where we know their system, and the other
where they know ours. While this slightly reduces security against
an attacker which knows our system by reducing the password
space, it may substantially increase security against a Zipf’s law
attacker.

2 BACKGROUND AND RELATEDWORK
There has been extensive research on usable passwords. We high-
light here a few which are particularly pertinent.

Provos and Mazières anticipated this work in 1999 in their semi-
nal paper on bcrypt [53]. Similarly, Bonneau has suggested [16, 18]

that by using a pwKDF, passwords can have constant protection
against attacks at a constant real-world cost. Finally, Polášek gives
an equation [52] to model attacker costs on random passwords
protected by Argon2.

2.1 Motivation
2.1.1 Usability. Shay et al. found random passwords of comparable
strength in various forms to be roughly equally memorable [60].
However, random passphrases took longer to enter and resulted in
more typos than random passwords of equivalent strength.

Greene et al. found random passwords with multiple character
classes harder to type on mobile phones [31]. The paper suggests
adapting password requirements to the device used. An alternative
may be to use strong random passwords with a minimal length and
number of character classes for all devices.

2.1.2 Random Password Memorability. Schneier suggests gener-
ating secure passwords, then writing them down and carrying
them with you in your wallet until memorized [59]. This provides
a “something you have” recovery method for the “something you
know” token, and provides for it the same physical protections
given to payment cards, which are also “something you have” to-
kens. This recovery process naturally strengthens memorability,
and the “something you have” recovery token may be safely dis-
posed of once the random password is learned.

Brumen found [22] that when preventing within-subjects par-
ticipants from writing down their random passwords, one week
later only 4 out of 40 remembered a 63-bit random Psychopass
password, and none remembered their 50-bit random password or
48-bit random passphrase, after 3 attempts. Each participant was
given all three random passwords, and retyped the password and
passphrase for 2 minutes each, and the Psychopass password for 5
minutes.

Leonhard and Venkatakrishnan compare [41] Diceware (38.8
bits), alphanumeric (35.7 bits), and pronounceable (30.8 bits) ran-
dom passwords in a between subjects study. Two weeks later, 2 of 7
Diceware participants and of 1 of 6 of both alphanumeric and pro-
nounceable password participants recalled their random password
successfully.

Yan et al. [67] found that users assigned an 8 character password
of letters and numbers (⪅ 48 bits) found it harder to remember
than user-chosen passwords, and carried a password reminder for
a mean of 4.8 weeks. The paper also reports that many still carried
the written random password 4 months later when surveyed.

However, three recent research papers have shown [18, 27, 34]
that participants can successfully memorize 56-bit random pass-
words. Each paper focused on helping the user memorize the ran-
dom password, instead of comparing different representations. Fu-
ture research may build on these findings, showing more efficient
memory techniques, or different representations using similar tech-
niques with useful properties and similar or superior memorability.

Notably, users can memorize long random secrets. One author
has used Schneier’s technique [59] to memorize a variety of 5 to 8
word Diceware passphrases.
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2.2 Methods
2.2.1 Password Key Derivation Functions. A Key Derivation Func-
tion (KDF) converts a secret input into one or more cryptographic
keys. Though inadequate for passwords, a simple KDF is to hash the
input with SHA256 and truncate the output to the desired length.
A secure hashing algorithm has the effect of distributing the true
entropy of the passphrase throughout the bits of the hash. How-
ever, should the true entropy of the passphrase exceed that of the
truncated hash, it is simpler for an attacker to guess the generated
hash. To illustrate, a hash truncated to a single bit would require
an attacker to guess only two values, instead of guessing the hash
input.

Password KeyDerivation Functions (pwKDFs) have an adjustable
amount of effort to compute the key from the password. This work
is balanced between the needs of user-serving devices processing
many login requests, and the increased cost to an attacker to test
password guesses. All pwKDFs also require a salt—a random value
long enough to make precomputation attacks infeasible, stored
alongside the derived key. The extra effort per guess multiplies
an attacker’s costs, meaning the attacker has to perform the same
amount of computation as though guessing an input from a larger
pool. This is sometimes referred to as “key stretching”. Popular
pwKDFs include argon2, scrypt, bcrypt, and pbkdf2.

In 2015, argon2 [13] won the Password Hashing Competition [7].
argon2 allows an adjustable work factor which includes access to
substantial amounts of RAM, multiple cores, as well as computation
effort. This RAM requirement is intended to make custom hardware
for guessing passwords no cheaper than buying server time. argon2
also has a mode resistant against side channel attacks.

Though there are current attacks against various argon2 algo-
rithms [5], these do not amount to the algorithm being broken. A
fivefold attacker speedup can be mitigated by adding an extra 2.3
bits to the minimum size of a generated password.

2.2.2 Password Guess Resistance. There are two major classes of
passwords as shown by Florêncio, Herley, and van Oorschot — those
that can defend against online attacks and those that can defend
against offline attacks [29]. Their work is a key source of inspiration
for our research. While user chosen passwords have a Zipf’s law
distribution [64], our focus is on keyspace guess resistance for
random cryptwords.

Wheeler provides zxcvbn [65, 66], a system which estimates:

• 100 guesses per hour for a throttled online attack
• 10 guesses per second for an unthrottled online attack
• 10k (104) guesses per second for an offline attack against a
pwKDF encoded password

• 10B (1010) guesses per second for an offline attack against a
fast hashing function

However, these numbers are not peer reviewed and may be
optimistic [25]; they might underestimate an attacker’s capabilities.

2.2.3 Computational Limits. It is possible to establish a minimal
length for cryptwords based on fundamental limits of computation,
but this produces relatively high limits, on the order of 256 bits.
Although such cryptwords will be strong indefinitely, they are long
enough to make them infeasible to remember, communicate, and

enter. For example, such a cryptword may be represented as 20
words from the Diceware [55] wordlist.

A simple approach is to use practical limits on computation im-
posed by physics [43]. A kilogram of perfect computation material
filling a volume of one liter can compute roughly 5.4 × 1050 logi-
cal operations per second. The planet Earth has a mass of around
5.9 × 1024 kg [63]. If we assume a password can be tested with
64 logical operations (a single round of MD5, for example), and
a user wishes their cryptword to be unbreakable until an aver-
age of 100 years of computation on such a device, the cryptword
would need to be generated randomly with equal probability from
log2

(
5.4×1050×5.9×1024×2×100×365.2425×24×3600

64

)
≈ 277.4 bits.

Using the diceware system, such a random passphrase would
consist of 22 words, such as “embargo flint canon requisite pointed
bargraph unicycle likely unsaved jasmine selective chloride unfair
unsorted graduate pedicure buddhist squishier nail skirmish gan-
grene deflector”. An alphanumeric random password would consist
of 47 characters, such as:

dqEDJkJjXYFoXYRQRR9dDjvXHnrUqRjmiqXgipK2yh974RU

2.2.4 Cryptography Key Lengths. We can apply lessons from mini-
mal encryption key strength estimation to the cryptwords used to
produce those keys. Cryptwords, like the cryptography keys they
generate, are independently and identically distributed.

Giry maintains a site [30] which lists related work, and calculates
encryption key strength based on the related work.

Blaze et al. show [15] in 1996 that every year we should add 2
3

of a bit to key strength. In 2001 Lenstra and Verheul gave a better
bound [40], adding 23

30 bits every year. This is the most recent paper
which estimates key lengths as years pass: subsequent related works
justify their recommendations by citing this paper.

These estimates are partially derived from Moore’s Law (Lenstra
and Verheul also add budget inflation), and it appears to be slowing
down [39]. Our paper sidesteps Moore’s law entirely by offloading
estimating the future to the user of our algorithm; ideally needing
only to estimate at most a few years into the future at a time.

3 AUTHENTICATION PASSWORDS
Passwords used to authenticate are subject to both online and of-
fline attacks, as covered in Section 1. Passwords intending to defend
against offline attacks must be much stronger, and hence less us-
able [29].

3.1 Online Attack Resistance
Password authentication involves two parties — the authenticating
party that presents their token, and the relying party that com-
pares the token against expected values. Because there are two
parties, the relying party can rate limit authentication attempts
or lockout accounts. Both reduce opportunities for an attacker to
guess authentication credentials, and are completely independent
of technology advances, as they are determined by policy. In such
cases it is trivial to determine minimal random password entropy
for a given acceptable risk level, such as in the case of bank card
PINs.

Many of the topwebsites do not protect accounts via rate limiting
or lockouts [44]. It is reasonable to model these parties as less
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concerned or aware about security more generally, and characterize
them as negligent systems. Attackers may conduct guessing attacks
against negligent systems bounded only by computational resources
and the speed of the communications channel between the attacker
and the negligent system. However, as long as the negligent system
uses a method of comparing the credential which has a fixed cost
despite hardware increases, there is an effective rate limit.

If we model the daily odds of detecting an attack of from 10–
1000 guesses per second are constant and not less than 1

100 per

day, an attack will be detected with 1 −
(
1 − 1

100

)365.2425
≈ 97.5%

probability after 1 year. Some ways an administrator may detect
an attack include user reports of sluggishness, occasional sporadic
checking of log files, and noting unusual traffic or CPU activity
levels in management dashboards. Given the odds of detection are
constant, even if an attacker slows down 100×, they will be detected
with equal probability, and would take 100 years to guess the same
number of passwords. At 1000 guesses per second, a login server
would need to spend a substantial amount of computation time
running the pwKDF for attacker guesses; we assume that above
1000 guesses the login server will either be so noticeably hobbled
that the odds of detection increase, or it is simply unable to process
more requests due to the effective rate limits of the pwKDF.

We can estimate adequate bit strength for random authentication
passwords with just two parameters. We’ll let 𝑎 represent the total
number of guesses we will allow the attacker, and 𝑟 denote the
acceptable risk of a successful guess. 𝑏 represents the minimum
size of the pool in bits from which the random password must be
generated to provide at least the desired security level.

𝑏 = log2
(𝑎
𝑟

)
(1)

At 1000 guesses per second, an attacker can guess up to 𝑎 =

365.2425 × 24 × 3600 × 1000 ≈ 31,556,952,000 passwords in a year.
To have a similar risk factor as common 4-digit bank card PINs of
𝑟 = 3

104 = 0.0003, online guess resistant passwords even at negligent

systems should never need be longer than log2
(
31,556,952,000

0.0003

)
≈

46.6 bits of entropy. This is higher than other numbers in the litera-
ture [29, 65, 66], which use 106 ≈ 19.9 bits [29].

Table 1 provides some varied examples of random authentication
passwords at different strengths. It is important to note that secu-
rity properties of random passwords are related to the underlying
entropy, and not to the character classes represented or the length
of the random password.

Endholm’s law [23] predicts bandwidth and data rate doubling
every 18 months, as with Moore’s law. Despite this, if defenders
use a pwKDF tuned to their modern hardware, the system remains
a constant bottleneck for attacks, and the load on the system from
attacker guessing should eventually provoke investigation. Ideally,
administrators will use at least rate limiting to protect user accounts,
allowing their users to use shorter random passwords to achieve
the same level of security.

3.2 Offline Attacks
Offline attacks against authentication passwords require an attacker
to have privileged access to the authentication verifier database.
As this database should be well protected, it is possible that an

attacker with this access may have access to read passwords in
plaintext as they enter the system (solvable via aPAKEs such as
OPAQUE [38]), or to inject JavaScript into an authentication web-
page with the same trusted privileges as the site itself to intercept
passwords as they are entered (not solvable by aPAKEs at the same
privilege level). Additionally, not all passwords are stored securely
by all systems, and the authentication verifier database may store
passwords in clear text or with reversible encryption. We discuss
threat models for offline attacks against authentication passwords
further in Section 6.1.

Because passwords are subject to various attacks which can re-
veal them other than offline guessing, offline guessing resistance is
a secondary consideration. If a defender believes they can detect a
password database breach within 𝑘 days from a passive attacker, it
would be nice if the passwords are stored securely and are strong
enough to resist guessing attacks for at least 𝑘 +𝑤 days, where𝑤
is the time allocated for notified users to change their passwords.
Passwords at rest should be protected by a pwKDF, tuned to intro-
duce a reasonable load on the authentication server(s). We provide
equations in Section 4.3 for estimating minimal strengths to defend
against offline attacks. These can also be used to estimate time and
resources to crack random authentication passwords at rest.

Additionally, for an attacker to benefit from an attack, there
will be some evidence of the attack [9]. This evidence can protect
a body of users in aggregate, even if the defender optimistically
overestimates 𝑘 , as easier targets in the population serve to de-
tect attacks. We discuss the likelihood of these attacks more in
Section 6.1, finding password-related losses unlikely, as only un-
common threat models need the password in addition to whatever
they could access when acquiring the password verifier.

3.3 Authentication Passwords Conclusions
Online attacks are subject to policy, so authentication passwords
do not need to get longer each year. Authentication passwords are
also subject to offline attacks, but the pwKDF parameters can and
should be tuned to maintain constant strength despite hardware
advances [53].

The information in this section is not new, but we discuss it
in the context of cryptwords to frame our contribution, and to
demonstrate that like cryptwords, authentication passwords need
not get longer.

4 CRYPTWORDS
Cryptwords are passwords used to generate encryption keys; to
encrypt. They should be randomly generated (see Section 1), and
we analyze only randomly generated cryptwords in this section.

Encryption is fundamentally a different environment than au-
thentication. Once an attacker has access to the encrypted informa-
tion, they cannot be rate limited or locked out. Encryption can be
used to protect secrets in a public environment, or the encrypted
information can be kept private. Recovery requires proactively stor-
ing copies of the encryption key in other locations; these should
also be kept safe. As proxies for encryption keys, cryptwords are
subject to the same properties.

We focus on cases where the encrypted information is kept pri-
vate. This includes disk encryption and file encryption where the
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Table 1: Various example random authentication passwords, bit strengths, and generation rules

Random Password Bits Notes

0154 13.3 4 digits, for a bank card with 3 guess lockout
}x* 19.7 3 chars from all 95 printable ASCII

vg9u 19.8 4 lowercase alphanumeric, without any of “l1IO0”, very close to [29]
454537 19.9 6 digit PIN, the exact entropy from [29]

glad bamboo 22.0 2 words from BIP-39 [49]
kfqaa 23.5 5 lowercase letters, easy to enter on mobile devices [31]

ceremony geranium 25.9 2 diceware words [55]
>v9K 26.3 4 chars from all 95 printable ASCII

kiwi credit library 33.0 3 words from BIP-39 [49]
839hxfm 34.7 7 lowercase alphanumeric without “l1IO0”

kJs59i 35.7 6 upper and lowercase alphanumeric
dyaaufct 37.6 8 lowercase letters, easy to enter on mobile devices [31]

sculpture blurb unchanged 38.8 3 diceware words [55]
g8MeJ8bD 47.6 8 upper and lowercase alphanumeric

files are kept on the computer or shared only with trusted com-
puters, which keep the encrypted files in sync. Software examples
include offline password managers, and SSH keys stored on disk.
We characterize these as data-at-rest encryption.

Encryption is also useful to protect and authenticate in protocols.
In these cases, a verifier is inherently available as part of normal
operations. Cryptwords can also be used in these cases to produce
encryption keys, such as with Wi-Fi passwords (WPA-PSK and
WPA2-PSK), and cryptocurrency Brain Wallets.

Online password managers may have the database password
double as an account password, and only send the database to users
with a valid password. This provides effectively the same level of
security as an offline password manager if the provider’s servers
are all no less trusted than user’s computers.

4.1 Constant Security Despite Evolving Threats
In cases where the encrypted data 𝐸 containing secrets 𝑆 is kept
private, such that an attacker cannot read it and all copies can be
updated, we can update our security level by updating the pwKDF
parameters 𝑃𝑛𝑒𝑤 and generating a new encryption key 𝐾𝑛𝑒𝑤 when
the user enters their cryptword 𝐶 . We use the old pwKDF parame-
ters 𝑃𝑜𝑙𝑑 to generate the old encryption key𝐾𝑜𝑙𝑑 , decrypt the secrets
𝑆 with 𝐾𝑜𝑙𝑑 , and then encrypt them freshly with the new key 𝐾𝑛𝑒𝑤 .
Note that 𝐾𝑛𝑒𝑤 = 𝑝𝑤𝐾𝐷𝐹 (𝐾𝑛𝑒𝑤 ,𝐶) and 𝐾𝑜𝑙𝑑 = 𝑝𝑤𝐾𝐷𝐹 (𝐾𝑜𝑙𝑑 ,𝐶).

One simple optimization is to avoid re-encrypting all of 𝑆 , which
can be slow in the case of full disk encryption or other large secrets,
by generating a data encryption key𝐷𝐸𝐾 strong enough to itself be
unguessable, use 𝐷𝐸𝐾 to encrypt 𝑆 , and then encrypt 𝐷𝐸𝐾 with 𝐾 .
When pwKDF parameters are updated to 𝑃𝑛𝑒𝑤 , only the𝐷𝐸𝐾 needs
to be decrypted with 𝐾𝑜𝑙𝑑 and re-encrypted with 𝐾𝑛𝑒𝑤 instead of
re-encrypting all of 𝑆 . This makes updating pwKDF parameters 𝑃 a
constant speed operation, regardless of the size of 𝑆 .

Cryptwords can be held at a constant length despite hardware
improvements by regularly updating the pwKDF parameters 𝑃𝑛𝑒𝑤
and re-encrypting using𝐾𝑛𝑒𝑤 until such time as the encrypted data
𝐸 leaks to an attacker. The pwKDF algorithm can be replaced in
like manner.
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Figure 3: Diceware words with and without entropy stretch-
ing

If it is not possible to keep the encrypted data 𝐸 from attackers,
the pwKDF parameters 𝑃 cannot be updated to derive a new encryp-
tion key 𝐾𝑛𝑒𝑤 to encrypt the secrets 𝑆 . In cases where 𝐸 cannot be
kept private, the user should generate a cryptword𝐶 strong enough
to protect the secrets 𝑆 for as long as they need to be protected.
In cases where 𝑆 itself can be replaced, such as an SSH key or a
cryptocurrency wallet address, 𝐶 can be sized to the replacement
window. However, when generating a new secret 𝑆2, the user will
also need to generate a new cryptword 𝐶2, as the encrypted data
𝐸1 can typically be used as a verifier to guess 𝐶1.

Figure 3 shows the impact of entropy stretching on diceware
passphrases, and Figure 4 shows how cryptwords can be held at
constant length despite replacing an encryption key of increasing
strength. Notably, Figure 4 shows that the key strength minus the
extra work is the cryptword length.
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Figure 4: Using extra work, cryptwords can have constant
length despite computational advances

4.2 Parameters
Kerckhoffs’s principle states that the attacker knows the system;
generating cryptwords from any distribution other than random
gives the attacker an advantage. With a random distribution, no
attacker guessing strategy can exceed parallel enumeration to en-
compass the whole set, or random guessing to reach some p-value
for success if they cannot afford to enumerate the whole set. See
Section 1.2 for a discussion of Zipf’s law attackers.

4.2.1 Defensive. We model our defensive terms as follows. 𝑡 is the
upper bound users are willing to tolerate for pwKDF processing
time, in seconds. 𝑡 is used directly to derive the pwKDF parameters
on the oldest supported hardware. 𝑟 is the acceptable risk that an
attacker will correctly guess a random password. For randomly
generated 4 digit bank card PINs with a lockout after 3 failed at-
tempts, this is 3

104 = 0.0003. 𝑏 is the minimal number of bits (log2
of the number of possible cryptwords) required to achieve the de-
sired performance. While this is useful as an output parameter
when generating random passwords, it can also be used as an input
when estimating costs or time for an attacker once a verifier for a
generated cryptword has leaked.

4.2.2 Attacker Advantage. We assume the attacker has some form
of computational advantage over the defender. This is natural if the
defender needs to run the pwKDF on a slower processor, such as an
older smartphone or an embedded system, or if the attacker man-
ages to acquire a verifier produced on then-modern hardware at
some point in the past. We call this parameter 𝑔 to represent the gap
in performance the attacker has over the defender, per equivalent
computing unit. This parameter allows us to ignore the current year
in all our equations, as we offload the task of forecasting environ-
ment changes to the user of our equations. It is based on the pwKDF
parameter update frequency, which itself is based on how often
older hardware is to be phased out of support (𝑡 values exceeding
acceptable values). Due to the wide variability of environments in
which this system may be deployed, and the relative advantage of

predicting the future only 2–3 years in advance, we offload this
to the defender. We discuss more in depth how to estimate this
parameter in Section 5.3.

4.2.3 Attacker Capabilities. We provide two equations to estimate
the attacker’s capabilities. The first is a more traditional “attacker
capabilities” equation. It assumes the attacker has a supercomputer
or computing cluster with given capabilities and is willing to devote
it to cracking cryptwords for some given duration. 𝑑 is the upper
limit of the number of days the attacker is expected to be willing to
dedicate their hardware to cryptword guessing. 𝑝 is the parallelism
advantage of the attacker’s hardware over the defender’s. If the
defender is using 4 core parallelism in their pwKDF and expect
the attacker to dedicate 8000 cores to attacking, the attacker has a
parallelism advantage of 8000

4 = 2000. Note that the relative speed
of each core is not considered here; the parameter 𝑔 represents how
much better the attacker’s computers are. In short, 𝑝 is an estimate
of the extra resources the attacker will bring to bear.

4.2.4 Attack Cost. Our second equation is somewhat novel. In 2001,
Lenstra and Verheul [40] use a barebones 450 MHz PC to estimate
attacker costs, recognizing that this may not fully capture the reali-
ties of economies of scale or dedicated hardware. AWS launched
cloud computing services in 2006, Microsoft launched Azure in
2010, and Google launched Compute Engine in 2012. Infrastructure-
as-a-service (IaaS) providers are in a competitive market, and so
prices may reasonably be assumed to somewhat closely reflect the
true costs of running a similar amount of computational capacity,
including some profit margin. In some cases cloud computing costs
may be lower than in-house costs after factoring in both capital and
operating expenses, due to the provider’s economies of scale. Even
in the case of a large entity fully funding a dedicated computing
farm for cryptword guessing, their true costs are likely to be within
an order of magnitude of the cloud computing costs.

So, we estimate an attacker’s cost to break a cryptword with
our second equation. 𝑚 represents the upper limit of money an
attacker will be willing to spend. This should be expressed in the
preferred currency of the largest cloud computing platforms, as
services are likely to be cheaper without an implicit exchange
fee. 𝑐 is the cheapest hourly cost for equivalent cloud computing
hardware, after factoring in bulk discounts, long reservations, more
capable computers, etc. We use the hourly cost as this is commonly
provided by current large providers; as all times are converted to
seconds to cancel out the 𝑡 term, it should be simple to adapt the
equations to other durations.

Parameter Summary.

• 𝑏 is the bitspace from which the cryptword must be gener-
ated

• 𝑟 denotes risk — the final chance an attacker will guess
correctly

• 𝑡 is the upper tolerable compute time in seconds to encode
the password on the slowest supported user’s machine, in
seconds

• 𝑔 is the performance improvement of attacker computation
over the slowest supported user device

• 𝑝 is the number of cores the attacker will dedicate
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• 𝑑 is how many days the attacker dedicates their hardware to
the cryptword. We convert this to seconds via the constant
86400, a simplified approximation of one day.

• 𝑐 is the hourly cost for equivalent hardware. We convert this
to seconds via the constant 3600.

• 𝑚 is the amount of money an attacker may spend attacking

4.3 Equations
Both equations rely on 𝑟 , 𝑡 , and 𝑔, the latter two chosen by the
developer. 𝑔 is based on the maximum age of supported hardware,
Moore’s law, and the chosen pwKDF algorithm. 𝑡 is based on user
patience for security, keeping in mind that users may feel safer with
a processing time on the order of 1 second [57]. 𝑟 determines how
much of the cryptword space an attacker can enumerate within the
provided constraints.

This first equation computes the required guessing space in bits
based on how many parallel guesses an attacker will make over a
given duration, and represents a traditional risk equation. It should
be used to estimate guessing space against an attacker with some
given capability and persistence.

𝑏 = log2
( 𝑔
𝑟𝑡

× 𝑝 × 𝑑 × 86400
)

(2)

This second equation computes the required guessing space
based on the cost an attacker might be willing to pay.

𝑏 = log2
( 𝑔
𝑟𝑡

× 𝑚

𝑐
× 3600

)
(3)

Both equations can be solved for other variables: 𝑑 for the safe
duration for a given parallel computation capability and𝑚 for the
cost to an attacker are particularly interesting.

𝑑 =
2𝑏𝑟𝑡
𝑔

× 1
86400𝑝

(4)

𝑚 =
2𝑏𝑟𝑡
𝑔

× 𝑐

3600
(5)

4.4 Limitations
The key cannot be regenerated until the user re-enters their pass-
word; thus, the encrypted information must be occasionally ac-
cessed. Infrequent use files will not have keys generated with up-
dated pwKDF parameters, and could be weaker than intended as a
result. Additionally, if not all copies can be updated — for example, a
zip file shared with coworkers who have copies on their individual
workstations — older copies will similarly not have updated pwKDF
parameters applied.

We leave to the system administrator or developer to choose a
correct value for the update window, and provide a correct scaling
factor 𝑔. If the scaling factor is underestimated, security will not
meet expectations, while if overestimated, the minimum cryptword
length may be less memorable. To help mitigate this we provide a
detailed example of estimating 𝑔 in Section 5.3.

If the cryptword is regularly entered and the pwKDF parame-
ters regularly updated, everything works as expected, and a single
constant length cryptword can be used until a verifier leaks. If the
encrypted information or a verifier is leaked or used publicly, the
same equations can show how long until the information leaks. If

the encrypted secret itself can be rotated, such SSH keys, Brain
Wallets (by transferring funds to a new wallet), or Wi-Fi PSKs, pass-
wordmanager passwords, etc., there is a known safe window during
which they can be used, based on estimates of 𝑔. If the secret cannot
be rotated or must be posted publicly, the secret must be protected
with a cryptword or encryption key of sufficient strength [40] to
last the duration of the life of the secret.

Our system could incentivize attackers to gather and store ver-
ifiers for later attack when attacker hardware improves, giving
the attacker an advantage beyond 𝑔. However, this is likely not an
effective use of attacker resources. First, for cases where a verifier
is public or easy to gather, we recommend choosing 𝑔 to last the
expected lifetime of the secret, as above. In cases where a verifier is
not easy to obtain, such as a password manager stored only on user-
controlled devices or in well-protected cloud services, we expect
the attacker will almost always have easier ways to benefit from
the attack. As mentioned in Section 3.2, we expect an attacker who
acquires a verifier usually has more effective ways to gain value
from the requisite access — for example, by installing a keylogger
on the computer to directly acquire the cryptword. This allows addi-
tional opportunities to detect the attack and change cryptwords and
protected secrets before any harm comes as a result of an attacker
guessing the cryptword.

5 USING THE EQUATIONS
It is useful to show how these equationswould apply in practice, and
how to estimate some key parameters. Figure 5 shows the developer
workflow, Figure 6 how a user would generate a cryptword for a
specific application, and Figure 7 how a user would use a cryptword
and a password manager for safe remote password authentication.

5.1 Estimating𝑚
It makes sense to set the value of𝑚, theminimum cost to an attacker,
higher than the upper financial value of the thing being protected.
Even if the value of something is purely financial, humans are loss
averse. The cost of losing future options is higher than the cost of
not gaining future options.

Most things have value beyond the mere financial. Loss of time,
reputation, and memory are all important to factor in. Further, if
the secrets protected could impersonate the defender, the cost of
possible scams to others should be considered, even if not repre-
sented directly as monetary losses to the defender or the defender’s
reputation.

A useful indicator that a defender has chosen a sufficient value for
𝑚 is if the defender says, “if an attacker is willing to pay𝑚. . .more
power to them”. Essentially declaring that the cost to the attacker is
far enough beyond the cost to the defender of failing to protect their
secrets that the defender is resigned to a loss given the unequal
value.

5.2 Estimating 𝑝
In Equation (2), 𝑝 represents the parallelism advantage the attacker
holds over the defender. As it is common for the defender to use a
single device, an attacker dedicating 100 devices, or a device with
100 processors, would have a parallelism advantage of 𝑝 = 100. For
𝑝 we ignore differences in the effectiveness of the hardware such
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as the relative number of cores: this is factored into 𝑔, discussed
in Section 5.3. One way to determine a generous estimate of 𝑝
is to consider the available power at some of the world’s largest
data centers as a potential upper-bound on what an attacker could
reasonably harness.

The Switch Tahoe datacenter is one of the largest in the world,
supporting a power draw of 850 Megawatts, at up to 55 kW per
server cabinet [61]. Guessing passwords using modern pwKDFs
is computationally bounded — thus, we can use the power draw
as an estimate of parallelism. 803,608 is a reasonable upper bound
estimate of the number of high power draw 1U servers the Switch
Tahoe datacenter can support [1].

The US NSA is a large intelligence agency, and may serve as an
example of a nation-state level attacker. The NSA recently built
a datacenter in Utah with a reported power draw of 65 MW [8],
more than 13 times smaller than the Switch Tahoe datacenter. Due
to economies of scale, it seems unlikely an attacker could build a
distributed server farm with more capability than the Switch Tahoe
datacenter. Due to high costs and the number of involved workers,
it seems unlikely that a nation-state actor could build a comparable
datacenter without public awareness [32].

5.3 Estimating 𝑔
A correct understanding of 𝑔, the gap between the slowest sup-
ported hardware, and the attacker’s hardware, is essential to the

accurate usage of these equations. Predicting the future is hard,
and grows harder the farther out one needs to predict. Additionally,
which devices to support and for how long is an administrative
decision which varies between different organizations. As a result,
we leave determining 𝑔 to the reader, based on their individual
circumstances.

Some key things to consider when deciding 𝑔:

(1) How long will hardware be supported for? The pwKDF
parameters are derived from the value of 𝑡 and the slowest
supported hardware, and are fixed until hardware is dep-
recated or the accepted value of 𝑡 changes. To add support
at the same 𝑡 for slower hardware outside the current sup-
ported set, cryptwords would need to be updated to hold
more entropy within themselves, to maintain the same lev-
els of security to account for the loss in protection from the
key stretching. This would run strictly contrary to the us-
ability goal of not changing the cryptwords, so the pwKDF
parameters must only be allowed to increase.
For organizations with largely homogeneous systems and
frequent hardware update, such as in server farms, depre-
cation might be updated annually. For deployment scenar-
ios with mostly heterogeneous systems and individualized
ownership, deprecation of supported devices might happen
much less often. In those cases, deprecated devices may still
continue to receive support, but would continue to suffer
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decreasing performance as the entropy stretching protects
them from stronger attacker hardware.
There is no harm in determining minimum pwKDF parame-
ters and allowing stronger ones on faster end user devices
(perhaps locally generated from 𝑡 ), so long as those devices
continue to check that they meet or exceed the minimum
pwKDF parameters, and update their parameters when the
minimums exceed their current settings.

(2) How often will hardware deprecation be reviewed? We
recommend at a minimum an annual review of hardware
support decisions and security levels, including tracking
predictions of attacker capabilities.

(3) How often will updated pwKDF parameters be shipped
to end user devices? Once pwKDF parameters have been
updated, theymust reach the user. Not all software is updated
regularly. Developers need to have a sense of how often
their users receive updates to estimate an update window.
Automatic updates and update notifications help.

(4) How often will users enter their cryptwords to decrypt,
allowing updates to those parameters to take effect?
Even after software updates ship with new pwKDFminimum
parameters, the software cannot rotate keys until the user
re-enters their cryptword. For some systems such as daily
use password managers this may be several times per week.
In general, the longer between cryptword entries, the more
difficult it will be to maintain in memory, so this should
typically be somewhat frequent. If necessary, the user may
also be prompted to re-enter their cryptword as part of the
update process.

The above factors determine a window of time, which the crypt-
word must endure. If any of these are not possible to determine
(for example, hardware will never be deprecated ever, even after
20 years), cryptwords should instead be generated based on the
maximum expected valuable lifetime of the secret to protect.

As an example, when designing a new mobile password manager
one might decide to support hardware which is currently 5 years
old and to keep support for all hardware for up to 9 years, giving
a 14-year technology advantage to the attacker. Decisions would
be reviewed annually, at which point any technology older than
9 years may be deprecated, upgrading the attacker’s advantage to
15 years. Updates would be deployed via an app store and users
frequently enter primary passwords (the cryptword), so perhaps
2–3 months may be added as a safety buffer.

Once we have a window, we need to predict what the attacker
will be capable of in the future. For the example above, we currently
only need to predict 10 years into the future, and as we deprecate
hardware, will only need to predict future hardware up until the
next deprecation window (a much easier task). Lenstra and Verheul
suggest [40] adding 23

30 bits of strength each year to an attacker’s
capabilities, though this may differ by changing base assumptions
in their equations (for example, Moore’s law may be slowing, or
budgets may be accelerating).

A simple algorithm follows:

(1) To estimate the gap, assume the attacker has access to the
current fastest, nicest, most parallel hardware most special-
ized to cracking the chosen pwKDF, and will use all known
attacks.

(2) Estimate the difference between the attacker hardware and
the slowest supported hardware.

(3) Multiply for any known cryptanalytic attacker advantages.
(4) Multiply by 2

23
30 or a personalized conversion factor for each

year into the future the guess must reach.
For the example mobile password manager, using the search

term “2017 smartphone popular”, we find an article listing the top
20 by sales [50] which seems adequately reliable. After manually
comparing each, we find the slowest is a quad-core 1.4 GHz Cortex-
A53 on the Nokia 3 [33] with 2 GB of RAM. We will use the most
recent version of Argon2 (not worrying at present about library
support), which is designed to eliminate the advantage of custom
hardware. The current fastest server CPU (in terms of threads ×
clock rate) is the EPYC 7773X, operating 128 threads at up to 3.675
GHz. This processor may be able to compute up to 84 times faster
than our Nokia 3. The current best attack against Argon2i-B gives
a 2× speedup at 256 MB of RAM with 3 passes over memory [5]. As
we’re predicting 10 years into the future, we set𝑔 = 84×2×2

23
30 ×10 ≈

34,135.5.
If not using a memory-hard pwKDF such as Argon2 or a suc-

cessor, the attacker can use application-specific integrated circuits
(ASIC) to perform computations possibly many times faster or more
parallel than a commodity processor. In such cases the defender
should factor this into 𝑔, and possibly 𝑝 or 𝑐 as appropriate.

The future is difficult to predict. We might make a breakthrough
in quantum computing in the next 5 years which updates 𝑔 to a
much larger number. Cryptanalytic advances may render Argon2
much weaker than previously supposed. Regardless, 𝑔 can be up-
dated, the equations recalculated, if necessary cryptwords or secrets
regenerated, and security maintained.

5.4 Updating pwKDF Parameters
As shown in Figure 5 and discussed in Sections 4.1 and 5.3, de-
velopers must regularly update the pwKDF parameters to provide
constant security from fixed-length cryptwords. The pwKDF pa-
rameters are chosen so the pwKDF runs in 𝑡 seconds on the slowest
supported hardware. As hardware is deprecated, it is essential that
the pwKDF parameters are increased so that 𝑔 remains constant.
Hardware deprecation may not be delayed but deprecated hard-
ware may still be used, with the caveat that it will no longer run
the pwKDF in only 𝑡 seconds. This will eventually result in an
unacceptable user experience on deprecated hardware.

The recommended method [14] to choose Argon2 parameters
requires access to reference hardware. Developers would therefore
tune their algorithm for the new slowest supported hardware during
each deprecation cycle, choosing parameters which mitigate known
attacks.

5.5 Worked Examples
We use 𝑟 = 3

104 to match accepted payment card PIN guessing risk.
We set 𝑡 = 0.8 to provide a noticeable delay to users, as it both

increases security and gives users a visceral sense that encryption is
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taking place [57]. Although 𝑡 is not used for logging in to a system,
it should be kept similarly short, as waiting for decryption is not
a user’s primary task. Additionally, each time it is doubled only
saves a single bit from a random password. 𝑡 has some natural
minimum value > 0, though the duration of a single round of md5
decreases as hardware performance improves. In practice, values of
𝑡 < 0.1 are likely to all be perceived equivalently to users, though
large companies with frequent logins may be motivated to decrease
it further to reduce the load on their login servers for password
hashing.

We set 𝑔 = 34,136, following the conservative estimates in Sec-
tion 5.3.

The mean net worth of US citizens in 2019 peaks in the 65–74
age group, at roughly USD $1,215,920 [3]. To factor in replacement
costs and losses (see Section 5.1), we round𝑚 up to USD $10,000,000.
We estimate that this should be above the replacement cost of the
average person’s current net worth.

We set 𝑐 = 0.2179, based on the current price for an AWS
c6g.16xlarge compute instance after applying a 90% discount for
Spot Instance use [4].

We set 𝑑 = 1826 as an outlier; it seems unreasonable that any
agency would be willing to dedicate a single piece of expensive
cracking hardware or large datacenter to guessing a single crypt-
word for a longer duration. This may exceed a practical upper limit,
but it should be at least equal to an upper limit.

We set 𝑝 = 803,608, assuming the entire capacity of a large
server farm is used to attack our passwords; see Section 5.2 for
more details. The differences between phone parallelism and server
parallelism are accounted for in 𝑔.

Summary of chosen values:

• 𝑟 = 3
104

• 𝑡 = 0.8
• 𝑔 = 34,136
• 𝑚 = 107 = $10,000,000
• 𝑐 = 0.2179
• 𝑑 = 5 × 365.24 = 1826.2
• 𝑝 = 803,608

𝑔
𝑟𝑡 = 142,233,333.3; equation (2) shows 𝑏 = log2 (142,233,333.3 ×

803,608 × 1826.2 × 86400) ≈ 73.9 and equation (3) shows 𝑏 =

log2 (142,233,333.3 × 10,000,000
0.2179 × 3600) ≈ 64.3. Under the above

generous assumptions, cryptwords of these lengths should be strong
indefinitely if pwKDF parameters are updated regularly and used
to regenerate encryption keys.

56-bit cryptwords are popular in the literature [18, 27, 34]. If
we relax 𝑔 to 105, keeping other parameters unchanged, we find
that 56-bit cryptwords can also be secure indefinitely against the
same financial threat, using equation (3). This would roughly cor-
respond to using argon2 with a 3-year attack window (including
hardware support, updates, and deprecation reviews) supporting
current desktop processors. One could instead reduce the risk or
threat model as in Section 6.3.

Some example cryptwords at these values:

• “gully hunger wistful reminder/” (56 bits, diceware [55] +
random symbol)

• “TN2nssteT53” (64 bits, alphanumeric minus “1lI0O”)

• “specks revenge smuggler dramatic quadrant” (65 bits, dice-
ware [55])

• “tmaw qvak whsu tgrm” (75 bits, 26 lowercase, chunked in
blocks of 4, easy to enter on a mobile device [31])

• “&DU7yg)}dq29” (78 bits, 12 printable ASCII characters)

5.6 Money to Days
As Equations (2) and (3) both estimate the same parameter, it is pos-
sible to set them equal to each other and solve for other parameters
of interest, such as a lower bound on how long a money-bounded
attacker would take to exhaust their budget.

𝑑 =
𝑚

𝑐 × 24 × 𝑝 (6)

Using the conservative estimates from Sections 5.1, 5.2, and 5.3,
an attacker with a budget of 𝑚 = $10,000,000 and a parallelism
advantage from renting an entire massive datacenter of 𝑝 = 803,608
at a cost of 𝑐 = $0.2179 per guessing-hour would require 𝑑 ≈ 2.38
days to exhaust their budget.

6 DISCUSSION
6.1 Offline Attacks Against Authentication

Passwords
Using a cryptword to authenticate does not protect from credential
stuffing attacks, as credentials may be compromised via phishing,
server compromise, or leaking insecurely stored verifiers from any
relying party. Password managers, including stateless password
managers (see Section 6.7) are a simple and effective solution to
credential stuffing, and some significantly help with phishing.

If a user uses a unique password for each site, the offline attack
resistance of their password only protects against an attacker which
(a) can only access the password verifier instead of the password,
and (b) requires the password to conduct their attack. Attackers
may (1) only have access to stored password verifiers, (2) only have
read access to account data and desire write access, or (3) desire to
continue or conduct an attack after they have lost access to account
data. Of note, all of these attackers would need to conduct their
attack before the user changes their password, which will ideally
follow shortly after administrators become aware of the breach.
This limits the window during which an attacker can guess verifiers,
as in Section 3.2.

Although these attacks are theoretically possible, they do not
appear to be used in any substantial volume [32]. As the risk is
therefore relatively small, the burden on users should be equally
small [35]. Cryptwords for authentication do not appear to justify
the usability costs even for infrequent scenarios where they must
be entered manually, such as from a portable device. As a result,
we concern ourselves principally with online attack resistance for
authentication passwords.

6.2 On The Choice of Neologisms
In two-party authentication contexts, passwords can be protected
using rate limiting and lockout schemes. As these passwords are
inherently shared, their security also depends on the security of
the party with which they are shared. Passwords used to generate
encryption keys are subject to offline attacks, which are faster and
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cannot be slowed or prevented once an attacker has a verifier. These
are not inherently shared, and must be stronger due to an attacker’s
relative advantage. Because they face different attacks and threat
models, they should not be conflated. Using different words to refer
to these will help system administrators and users be aware that
each needs to protect against different threats.

Current language to refer specifically to passwords used to en-
crypt includes “primary password” (replacing the deprecated term
“master password”) and “strong password”. “Primary password” is
specific to passwordmanagers, and doesn’t adapt as well to contexts
like zip file encryption and Wi-Fi PSK. “Strong password” has the
disadvantage of not inherently introducing a new concept: as it is a
noun phrase, “strong” is weakly connected and could be interpreted
as implying the same thing, just stronger. “Seed” is used to refer
to a source of randomness which provides the initial state for a
random number generator to produce the same output, and it is
not wrong to apply the term to a password used to generate an
encryption key.

An ideal neologism would (1) share some inherent parallelism
with the term “password” to support analogical reasoning, (2) be
pithy (terse and memorable), (3) and be both precise and accurate
in meaning. “Cryptword” shares the second half of “password”, and
can be described as “a password used to encrypt”, supporting such
analogical reasoning. Though pithy, it inherits the same misuse
of “word” from “password”, where far more than words are repre-
sented (PINs, word sequences, non-word alphanumeric strings, etc.).
“Cryptseed” as a neologism has the advantage of being pithy, pre-
cise, and accurate, but lacks inherent parallelism with “password”.
Both alternatives are short and can replace the word “password”
in many UI designs with minimal changes, as their lengths are
very similar. We have chosen the term “cryptword”, as we value
supporting analogical reasoning.

6.3 Bit Contribution
Because log2 (𝑥 × 𝑦) = log2 (𝑥) + log2 (𝑦), it is easy to compare
how many bits each parameter in the equation adds to the final
bit strength. We analyze this using the parameter values from Sec-
tion 5.5.
𝑟 = 3

104 adds 11.7 bits to 𝑏, which could drop to as low as 1 bit
at 𝑟 = 0.5. For contrast, Diceware provides 12.9 bits of entropy
per word added; this choice of 𝑟 therefore requires one more word
than that of someone willing to accept the same odds as a coin
toss. 𝑡 = 0.8 increases 𝑏 by 0.3, and at human-relevant speeds has
a fairly minimal impact on 𝑏, from −3.3 at 10 seconds to 3.3 at
1
10 th of a second. As large values of 𝑡 can have a significant impact
on the usability of the system without much security benefit, we
recommend 𝑡 ≤ 1. 𝑔 = 34,136 adds 15 bits. Like 𝑡 , this is chosen
by the developer and reflects the tension between two different
usability factors in the security domain — shorter cryptwords vs
longer device support windows. Finally, our threat models add 37.3
bits for money and 46.8 bits for the 5-year datacenter attack.

Notably, more than half of 𝑏 comes from user-chosen parameters:
the acceptable risk and the threat model.

6.4 End User Load
Random passwords are less memorable than unconstrained user
chosen passwords, but are more secure [67]. Assigned cryptwords
can be memorable [18, 27, 34], though perhaps not without a focus
on memory training [22, 41]. Non-computerized password stores,
such as paper in a wallet, can reduce human memory burdens by
converting a cryptword into a “something you have” token until
memorized [59].

Using a desktop, smartphone, or online password manager, it is
easy to generate and store random passwords; these can be gener-
ated to be easy to enter [31] and remember for contexts precluding
access to the password manager, such as logging into a computer
or unlocking a mobile device. By using an encrypted password
manager, users should only need to remember a single cryptword
and a small handful of authentication passwords to access devices
to access the password manager (possibly none if using biometric
authentication for device access). If a user must have multiple pass-
word managers, we suggest storing easily-entered cryptwords for
these password managers in a single portable primary password
manager.

We model users as being willing and able to memorize between
5 and 7 distinct passwords with none or few strong against offline
attacks, based on prior work [28]. A cryptword could be considered
equivalent to 4–5 of these passwords, leaving sufficient remaining
capacity to store an additional authentication password or two
for accessing devices storing the password manager. Biometrics
can further reduce the cognitive load, and secure non-computer
password storage can reduce the cognitive load to only the effort
to locate, read, and enter the few authentication passwords and the
cryptword stored on the paper.

It is difficult to quantify the cost of using random passwords and
cryptwords, especially when combined with password managers,
and given the substantial variety of types of generated passwords
(see Table 1 for some examples).

6.5 User Freedom
Users are not homogenous, and sometimes have goals and values
which run counter to paternalistic security measures [26]. A com-
mon and simple example is how character class restrictions on
websites can impede or make it more difficult to use user-generated
random passwords, such as from a password manager.

With authentication passwords, there are two parties involved:
the user, and the system they authenticate to. As an involved party,
the system can reasonably require some controls on authentication
methods to prevent misuse of resources by unauthorized parties.
However, these controls should be reasonable and respect user
autonomy.

Users should be allowed to select their own passwords. Although
assigned random passwords have a known security strength, users
may generate random passwords via other means which have equal
or higher security. Preventing users from generating their own
passwords can decrease a user’s security. However, it would be
helpful to generate a fresh random password at the site’s security
level as a suggested password nudge for users [68]. Authentica-
tion password maximum lengths should generally [62] be tuned to
protect from denial of service attacks. 4096 bytes is a reasonable
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upper limit [11]. Similarly, systems should support password input
of at least all 95 printable ASCII characters. Unicode is desirable,
but should be tested for common problems [19]. Finally, password
resets [24] should only be required in response to suspected server
compromise.

Cryptwords have only one party involved: the user. Systems
which use cryptwords should not have maximum or minimum
lengths; the user should be permitted to use an empty string if it
meets their security needs. Unmasking [37] (letting the user unhide
their password during entry) is especially helpful for cryptwords as
these are long and thus subject to increased typos [60]. Cryptword
generators should allow users to control as many of the parameters
in the equations as can be reasonably usable to the target popula-
tion. In some cases, this may be as simple as a monetary value slider,
with other values fixed. Systems should give the user enough infor-
mation to decide what level of security they need. As an example,
if a protocol publishes a verifier publicly, users will need to know
to rotate their cryptwords and protected data after an expiration
period of their choice (see Section 4.4). Additionally, users need
to be aware that they are inputting a cryptword; using the label
“cryptword” instead of “password” may help (see Section 6.2).

6.6 Lockouts and Rate Limiting
Lockouts and rate limiting can be used to conduct a denial of service
(DoS) attack against a system or an individual account [42]. For
usability, lockout limits should be higher than three failures [21, 48,
56].

Against a relatively unconstrained attacker, resetting passwords
on account unlock provides little advantage to the defender [24]
over simply unlocking the account. In brief, if an attacker is given 𝑎
guesses against a random password of 𝑏 bits, their odds of success
before the account is locked are 𝑎

2𝑏 . If the password is later reset
to the same level of security, the attacker has another chance with
odds 𝑎

2𝑏 . If an account may be unlocked and the password reset to
the same security level 𝑛 times, the aggregate risk of an attacker
guessing the random password is 1 −

(
1 − 𝑎

2𝑏

)𝑛
. With a 4-digit

PIN and a 3-strikes lockout policy, an attacker’s odds are 0.03%.
However, if we allow the attacker to continue guessing after PIN
reset up to a maximum of 10 lockouts, their cumulative odds raise
to ≈ 0.3%. It is simple and conservative to model this as allowing
𝑎 ×𝑛 = 30 attempts against a single random PIN. So, if the user can
unlock their account, the total attacks across all times the account
may be unlocked should be factored into the attacker’s capabilities
such as in Equation 1.

Should an account be locked, it is reasonable to still provide
access with additional security guarantees. These could include
adding a CAPTCHA (increasing attacker costs though not pre-
venting automation [6]), requiring a second authentication factor,
increasing the minimum strength of a new random password out
of reach for a reasonably unbounded attacker, or switching to an
alternate authentication system which may be more secure but less
usable. These may be used with a Risk-Based Authentication (RBA)
system which adds enhanced protections for suspicious access.

6.7 Stateless Password Managers
Stateless password managers such as Spectre [12] allow a user to
regenerate any password from just their primary password and a
system, usually software. These have essentially the same advan-
tages of passwords [17] except possible reliance on a computer:
since passwords are typically entered on computing devices, this
disadvantage would appear to have minimal impact. However, there
are some security considerations which are not immediately obvi-
ous.

Any leaked password can serve as a verifier for the primary pass-
word, which is a cryptword used to generate all other passwords.
While the primary password can be protected by a strong pwKDF,
any updates to the parameters of the pwKDF require updating all
generated passwords across all sites. As there is no list of sites,
this may require supporting past pwKDF parameters in the UI,
complicating usability. Additionally, if the primary password is not
changed, a leaked password generated with previous parameters
can still compromise the primary password.

While these problems can be solved with a password generation
key itself encrypted via the primary password, the system would
no longer be stateless, losing a unique advantage over other pass-
word managers. Without modification, these can be used securely
by choosing for the primary password a cryptword which can re-
sist attacks indefinitely, just as other cases where a protocol posts
protected information publicly which cannot be rotated.

The “passwortkarte” [2, 46] (“password card”) is another kind
of stateless password manager. These require something to be car-
ried but do not require a computer; the algorithm is performed
by the user. If these are generated from a seeded random number
generator [51], the same security considerations apply.

6.8 Quantum Computers
Bennett et al. proved [10] that a quantum computer can at best
half the key space for brute force key searching. This means that if
quantum computers are a legitimate threat model, 𝑏 should be dou-
bled. Additionally, any quantum attack speedup against a chosen
pwKDF should be factored into 𝑔 like any other attack, as discussed
in Section 5.3.

7 CONCLUSIONS AND FUTUREWORK
We present two significant paradigm shifts. The first, that crypt-
word and random authentication password lengths can stop in-
creasing — forever. Instead of requiring ever longer passwords, we
can generate passwords and rehash them when users enter them
to maintain a security value above some minimum threshold. The
second, that passwords and cryptwords are subject to very different
attack scenarios, and should be clearly distinguished in user inter-
faces. Ultimately, we feel “cryptword” should become a household
term.

We have provided reasonable upper limits for authentication
password lengths and proposed some reasonable cryptword lengths.
We expect this to influence future authentication papers, inform-
ing the lengths they target and the kinds of usage scenarios they
envision.
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FutureWork. There are many interesting areas of research to pursue
in the future.

How well does the term “cryptword” resonate with end users?
Will it change behavior after a brief explanation, or will users
interpret it as just a stronger password?

How often are cryptwords entered? There is work related to
authentication event frequency, but as cryptwords are not used to
authenticate, there is no comparable work for cryptword use. This
would inform the vulnerability window when choosing a suitable
value of 𝑔.

We expect that with a fixed target to hit, researchers will iden-
tify memorability issues surrounding these longer “something you
know” tokens, including innovating entry mechanisms beyond the
keyboard, or memory beyond recall. We expect this to contribute
greatly to the usability of both encryption and authentication in
the future.

Future researchmight investigate how best to encode cryptwords
for memorability. Shay et al. show [60] that for shorter random pass-
words where letters and words both fit within Miller’s 7± 2 chunks
for working memory [47], random passphrases and passwords are
equally memorable. Do these results hold for cryptwords, which
are longer, or does the reduced chunking from a larger dictionary
aid memorability?

We need to better understand user’s threat models to determine
if a single secure generated cryptword for a password manager
is an acceptable security tradeoff. Users may be more willing to
accept cryptwords if they reduce the overall authentication burden,
as the password manager can handle other authentication tasks.

Would users feel more comfortable if they can pick a cryptword
from a selection of options, and the security level adjusted to sub-
tract a corresponding number of bits (e.g., 3 bits if selecting from
eight alternatives)?

There is also the issue of educating system administrators and se-
curity software developers. How can this radical notion reach them,
so new systems are designed more usably, and current systems
updated to become more usable?

Would redundancy in cryptwords aid recovery? Passwords can
be recovered via alternate authentication; cryptwords may be re-
covered by writing them down and storing them somewhere secure.
However, with forward error correcting codes in the bits of the
cryptword, it may be possible to nudge users to re-train on the
cryptword, or be more flexible in how it is entered without reduc-
ing security.

Cryptwords and authentication passwords should be randomly
generated to provide guaranteed security, but because users have
differing needs we recommend allowing users the freedom to gener-
ate these outside of system control (see Section 6.5). This means at
least some will choose to forego alternate means of secure random
generation, and use user-chosen passwords as cryptwords. These
will naturally fall into a Zipf’s law distribution. Can our equations
and analysis be meaningfully adapted to analyze guessability of
Zipf’s law distributions? Can user-chosen cryptwords be strong
enough to resist offline attacks under the same threat models?

Finally, future attacks will require new defenses. Quantum com-
puters are one such advancement. A post quantum pwKDF will
enable our results to remain relevant even as quantum computing
becomes more available.
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